OMEGA 3 and OMEGA 6



Omega-3 :

————————–

Omega-3 fatty acids (also called ω−3 fatty acids or n−3 fatty acids) are fats commonly found in marine and plant oils. They are polyunsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. The fatty acids have two ends—the acid (COOH) end and the methyl (CH3) end. The location of the first double bond is counted from the methyl end, which is also known as the omega (ω) end or the n end.

 Some of the potential health benefits of omega-3 fatty acids supplementation are controversial. They are considered essential fatty acids, meaning that they cannot be synthesized by the human body but are vital for normal metabolism. Though mammals cannot synthesize omega−3 fatty acids, they have a limited ability to form the long-chain omega−3 fatty acids including eicosapentaenoic acid (EPA, 20 carbons and 5 double bonds), docosahexaenoic acid (DHA, 22 carbons and 6 double bonds) and α-linolenic acid (ALA, 18 carbons and 3 double bonds).
 Common sources of omega–3 fatty acids include fish oils, algal oil, squid oil, and some plant oils such as echium oil and flaxseed oil.

 Used in :

.1 Cancer

.2 Cardiovascular disease

.3 Inflammation

.4 Developmental disorders

.5 Psychiatric disorders

.6 Cognitive aging

.7 And more.

 Mechanism of action :

The ‘essential’ fatty acids were given their name when researchers found that they are essential to normal growth in young children and animals, though the modern definition of ‘essential’ is stricter. A small amount of omega−3 in the diet (~1% of total calories) enabled normal growth, and increasing the amount had little to no additional effect on growth.

 Likewise, researchers found that omega-6 fatty acids (such as γ-linolenic acid and arachidonic acid) play a similar role in normal growth. However, they also found that omega−6 was “better” at supporting dermal integrity, renal function, and parturition. These preliminary findings led researchers to concentrate their studies on omega−6, and it is only in recent decades that omega−3 has become of interest.

 In 1964, it was discovered that enzymes found in sheep tissues convert omega−6 arachidonic acid into the inflammatory agent called prostaglandin E2, which both causes the sensation of pain and expedites healing and immune response in traumatized and infected tissues. By 1979, more of what are now known as eicosanoids were discovered: thromboxanes, prostacyclins, and the leukotrienes. The eicosanoids, which have important biological functions, typically have a short active lifetime in the body, starting with synthesis from fatty acids and ending with metabolism by enzymes. However, if the rate of synthesis exceeds the rate of metabolism, the excess eicosanoids may have deleterious effects. Researchers found that certain omega−3 fatty acids are also converted into eicosanoids, but at a much slower rate. Eicosanoids made from omega−3 fatty acids are often referred to as anti-inflammatory, but in fact they are just less inflammatory than those made from omega−6 fats. If both omega−3 and omega−6 fatty acids are present, they will “compete” to be transformed, so the ratio of long-chain omega−3:omega−6 fatty acids directly affects the type of eicosanoids that are produced.

This competition was recognized as important when it was found that thromboxane is a factor in the clumping of platelets, which can both cause death by thrombosis and prevent death by bleeding. Likewise, the leukotrienes were found to be important in immune/inflammatory-system response, and therefore relevant to arthritis, lupus, asthma, and recovery from infections. These discoveries led to greater interest in finding ways to control the synthesis of omega−6 eicosanoids. The simplest way would be by consuming more omega−3 and fewer omega−6 fatty acids.

 They are required during the prenatal period for the formation of synapses and cell membranes. These processes are also essential in postnatal human development for injury response of the central nervous system and retinal stimulation.

Leave a Comment Name, Email and Message are Required